DRAFT AGENDA
 PACIFIC SALMON COMMISSION
 FRASER RIVER TECHNICAL COMMITTEE
 Thursday August 3, 2023 at 1:00 pm.
 Via Zoom

1) Agenda
2) Webinar Etiquette
3) Run status of Fraser River sockeye salmon relative to forecasts and adopted run sizes

PSC Staff
4) In-season data flow for updating objectives
a) Test fishing catches and acoustics
b) Mission projected sockeye estimate vs. Qualark estimate
c) Species Composition
d) Stock proportions \& age composition
e) Environmental conditions
i) Environmental report
ii) E.Summer model comparisons
iii) Current drought map
iv) Retrospective analysis for E. Summers based on low discharge years
v) Spawning ground information on drought years
vi) Tagging information
f) Observations from the watershed

DFO
5) Assessments and recommendations
a) Daily migration graphs
b) Escapement projections
c) Expansion lines
d) Run size model outputs
e) Run size and timing estimates
6) Other Business
a) Matsqui Fishwheel
7) Next Technical Committee meeting, Thursday August 10, 1:00 p.m. via Zoom

2023 Run status of Fraser sockeye and pink salmon
Date: Aug. 3, 2023
The information presented in this distribution has been prepared by PSC Secretariat staff and should be considered preliminary until reviewed by the Fraser River Panel

Week of: Jul. 30 - Aug. 5, 2023	Sockeye					Pink
		Managem	nt Group		Total	Total
	E.Stuart	E.Summer	Summer	Late	Fraser	Fraser
Mission passage (inclds Pitt, Alouette, Coquitlam)	40,600	161,400	32,800	500	235,300	0
Catch downstream of Mission	200	2,600	1,600	100	4,500	200
Accounted Run To Date	40,800	164,000	34,400	600	239,800	200
Run size adopted in-season ${ }^{2}$	43,000	na	na	na	na	na
Run size forecasted pre-season	23,000	186,000	1,167,000	188,000	1,564,000	6,135,000
Area 20 timing adopted in-season	2/Jul	na	na	na	na	na
Area 20 timing expected pre-season	7/Jul	6/Aug	17/Aug	24/Aug	16/Aug	24/Aug
Johnstone Str. Diversion Rate		In-season 5-day average			52\%	0\%
	Preseason forecast of annual rate:				67\%	53\%

${ }^{2}$ Run sizes are usually not adopted until after the peak of the run has passed through marine test fishery areas in Juan de Fuca and Johnstone straits.

2023 Fraser Sockeye Test Fishing \& Escapement Summary

${ }^{1}$ Alternative Lower River Test Fishery - Southern Endowment Fund Project
${ }^{2}$ Qualark escapement estimate - does not include Chilliwack, Pitt, Harrison, Birkenhead, Big Silver, Weaver, and Cultus
${ }^{3}$ Qualark source:
RB + LB = Right-bank (RB) + Left-bank (LB)
${ }^{4}$ Mission escapement estimate - does not include Pitt
${ }^{5}$ Mission source:

> A1+M+A2 $=$ Left-bank ARIS (A1) + Mobile split-beam (M) + Right-bank ARIS (A2)
> A1+M + A2 $=$ Left-bank ARIS (A1) + Mobile ARIS (M2) + Right-bank ARIS (A2)
${ }^{6}$ Daily Hells Gate abundance estimate; actual daily count has been expanded
** Three sets performed for Qualark Gillnet

2023 Fraser Pink Test Fishing \& Escapement Summary

	Johnstone Strait	Juan de Fuca Strait	Fraser River									
Area/Gear Location From A20	A12 PS Blinkhorn (-1 day)	```A20 PS Port Renfrew (0 days)```	A29-13 GN Cottonwood (+5 days)	A29-17 GN Brownsville Bar^{1}	A29-16 GN Whonnock (+6 days)	Whon CPUE Estimate (+6 days)	$\begin{aligned} & \text { GN Catch } \\ & \text { (+8 days) } \end{aligned}$	Qualark Estimate ${ }^{2}$	Method ${ }^{3}$	Missio Estimate (+6 days)	coustics Method ${ }^{5}$	Hell's Gate Estimates ${ }^{6}$ (+10 days)
13-Jul				0	0	0.00	0 **	0	RB+LB	0	S1+M+A2	0
14-Jul				0	0	0.00	0**	0	RB+LB	0	S1+M+A2	0
15-Jul				0	0	0.00	0 **	0	RB+LB	0	S1+M+A2	0
16-Jul				0	0	0.00	0 **	0	RB+LB	0	S1+M+A2	0
17-Jul				0	0	0.00	0 **	0	RB+LB	0	S1+M+A2	0
18-Jul				0	0	0.00	0**	0	RB+LB	0	S1+M+A2	0
19-Jul				0	0	0.00	0 **	0	RB+LB	0	S1+M2+A2	0
20-Jul	302			0	0	0.00	0**	0	RB+LB	0	S1+M2+A2	0
21-Jul	931	128		0	0	0.00	0**	0	RB+LB	0	S1+M2+A2	0
22-Jul	549	410		0	0	0.00	0	0	RB+LB	0	S1+M2+A2	No Count
23-Jul	1,782	1344 (5 sets)		0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
24-Jul	69 (4 sets)	2,440		0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
25-Jul	927	1,150		0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
26-Jul	9,305	3,364	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
27-Jul	3,334	10,148	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
28-Jul	11,055	6,285	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
29-Jul	574	7,964	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
30-Jul	1,800	6,100	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
31-Jul	2,199	4,152	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
1-Aug	10,849	6,072	0	0	0	0.00	0	0	$\mathrm{RB}+\mathrm{LB}$	0	S1+M2+A2	0
2-Aug	11,745	4,101	0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
$\begin{aligned} & \text { 3-Aug } \\ & \text { 4-Aug } \end{aligned}$												

${ }^{1}$ Alternative Lower River Test Fishery - Southern Endowment Fund Project
2 Qualark escapement estimate - does not include Chilliwack, Pitt, Harrison, Birkenhead, Big Silver, Weaver, or Cultus
3 Qualark source:
$R B+L B=$ Right Bank $(R B)+$ Left Bank (LB)
4 Mission escapement estimate - does not include Pitt
5 Mission source:
$S 1+M+A 2=$ Left bank split-beam (S1) + Mobile split-beam (M) + Right bank ARIS (A2)
S1+M2+A2 = Left bank split-beam (S1) + Mobile ARIS (M2) + Right bank ARIS (A2)
${ }^{6}$ Daily Hells Gate abundance estimate; actual daily count has been multiplied by 2.
** Three sets performed for Qualark

Date: 3/Aug/23

Time: 11:57 AM

	-		
	Common		
	All Days	Days	
Mission projection	184,955	163,987	
Qualark estimate	159,813	159,813	
	Difference	$\mathbf{4 , 1 7 4}$	
	\%Difference	$\mathbf{3 \%}$	

Difference between Qualark Passage Estimate and Mission-based Projection

Difference: Mission Projection - Qualark Estimate

FRTC - August 3, 2023
Species Composition Update

Chinook:

- July 1-17: median daily forecast abundance; July 18-24: historical daily average
- From July 25 onwards we have updated the Chinook abundance to follow the p75 forecast abundance level as most estimators have been above the historic median. Our typical approach would have been to use the Albion CPUE and cap the Chinook estimate using the $95^{\text {th }}$ percentile. Adding the p 75 forecast provides an alternative that is not as extreme as some of the other methods indicate (Albion, Whonnock species comp, stratified method).
- Had we continued to use the historical median, Chinook abundance would be 5,600 less.
- At this time of year, most Chinook passing Mission will also be passing Qualark.

Sockeye:

- Sockeye abundance is calculated as total salmon minus Chinook
- Total salmon abundance is based on Mission hydroacoustics
- Most alternative sockeye estimates are in congruence.

2023 Fraser River Sockeye Salmon Stock identification Review
Recent stock composition estimates for sockeye salmon

2023 Fraser River Pink Salmon Stock identification Review
Recent stock composition estimates for pink salmon

Notes for sockeye and pink tables:
${ }^{1}$ BB GN=29_13 (Cottonwood,Brownsville), AT = Alaska Twist, AB GN= 29_16 (Whonnock), MA FW=Matsqui Fish Wheel, QU GN=Qualark
${ }^{2}$ TF=sample from test fishery catch, CM=sample from commercial catch, C\&S=ceremonial \& subsistence catch, FSC=food, social, \& ceremonial catch, rec= recreational catch
${ }^{3}$ Predictions for sockeye are multinomial extrapolations of current year data to 5 days after the last observation; Predictions for pink salmon are projections of stock compositions based on historic and current data
${ }^{4}$ Further information relating stock group descriptions to spawning ground locations and population definitions can be found at
http://www.psc.org/FRPWeb/Escapement/PSC Fraser Sockeye Stock_Group_Definitions.pdf

Results in grey text have been presented to the Panel previously

Area 12

Area 20

Fraser River Pink salmon proportion in Area 20

Area 7A

Daily boxplots; $\min =$ p25 - (1.5 * interquartile range); $\max =$ p75 + (1.5 * ITQ) Date: 2023-08-03, Time: 08:30

Observed Fraser River Temperature at Qualark for 02-Aug	$19.7^{\circ} \mathrm{C}$
Average (1991-2020) Historical Temperature on this day	$18.3^{\circ} \mathrm{C}$
Deviation from Average	$1.4^{\circ} \mathrm{C}$
Forecast Temperature for \quad 08-Aug-23	$20.3^{\circ} \mathrm{C}$

The forecast in Kamloops is for above average air temperature. The forecast for Prince George is for above average air temperature.

Observed Fraser River Discharge at Hope for 02-Aug	$2276 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$
Average (1991-2020) Historical Discharge on this day	$4134 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$
\% above or below Historical Discharge	-45%
Forecast Discharge for \quad 08-Aug-23	$2005 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$

The forecast in Kamloops is for 6 mm precipiatation. The forecast in Prince George is for 9 mm of precipitation.

Discharge Legend

- Mean Dis (1991-2020)
.-- +/- sd
- Min Dis (1991-2020)
- Max Dis (1991-2020)
- Current Dis
- Forecast Dis
- E.Stuart Threshold $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right)^{1}$
- E.Summer Threshold $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right)^{\text {if }}$

Run timing bars represent a 31 day spread of the run centered around the Hell's Gate date. Hell's gate timing is 5 days from Mission for Early Stuart and Late run; and 4 days from Mission for Early Summer and Summer run.'pMA is the proportional increase to spawning escapement targets to help ensure targets are achieved."\%DBE is \%difference betweeen estimates of potential spawning escapement and spawning escapement.*This is the optimum temp for aerobic swimming - $T_{\text {opt }}$ (Eliason et al. (2011). Science 332 : 109-112)**This is the upper range of the optimum temp for aerobic swimming - $T_{\text {pejus }}$. 'Discharge threshold of 8000 cms for Early Stuart from Macdonald (2000). Can. Tech. Rep. Fish. Aquat. Sci. 2315: 120p. iiDischarge threshold of 6500 cms for Early Summer run from Macdonald et al. (2010). Trans. Am. Fish. Soc. 139: 768-782. 19 days of T \& Q data are required to calculate a pMA - 15 days before the Hell's Gate Date and 3 days after. MA estimates can be calculated 4 days after the Area 20 date.

Upriver of Slide	Map \#	Current Temperatures 02-Aug	Daily Mean	Historic Mean	Deviation from Historical Mean	Historic Year Range
Fraser River Mainstem						
	1	Fraser River @ Qualark	19.7	18.3	1.4	1991-2020
	2	Fraser River @ Texas Creek	18.9	18.3	0.6	2006-2022
	3	Fraser River @ Big Bar Creek	NA	NA	NA	2019-2022
-	4	Fraser River @ Marguerite	18.6	18.6	0.0	2015-2022
-	5	Upper Fraser @ Shelley	17.2	15.2	2.0	1994-2022
Fraser River Tributaries						
	6	Thompson R. @ Ashcroft	19.7	17.8	1.9	1995-2022
	7	South Thompson @ Chase	19.8	19.2	0.6	1994-2022
	8	North Thompson @ McLure	18.1	15.4	2.7	2006-2022
-	9	Quesnel R. @ Quesnel	17.1	16.8	0.3	2000-2022
-	10	Nechako R. @ Isle Pierre	18.7	19.1	-0.4	2006-2022
-	11	Stuart R. @ Ft. St. James	19.3	18.7	0.6	2000-2022

Early Summer run pDBE Forecast and Sensitivity Analysis for August 03, 2023
Based on the retrospective analysis evaluation of 2010-2021 for Early Summer run the best performing in-season model is the All-years Median (1977-2021)

Model Perfo Retrospectiv	rmance Ba e	on "In-season pD	E Approach"		Best	2	3
Area 20 Date	Hells Gate Date	Average Temperature ${ }^{\circ} \mathrm{C}$	Average Discharge $\mathrm{m}^{3} / \mathrm{s}$	Current Adopted pDBE	All-Years Median (1977. 2022) Predicted pDBE	Supplemental Approach if Temp > 18 Predicted pDBE	Current 19-day Model Predictions Predicted pDBE
19-Jul	29-Jul	19.7	2489	-0.36	-0.36	-0.46	-0.52
20-Jul	30-Jul	19.7	2467	-0.36	-0.36	-0.46	-0.52
21-Jul	31-Jul	19.7	2442	-0.36	-0.36	-0.46	-0.53
22-Jul	01-Aug	19.7	2421	-0.36	-0.36	-0.46	-0.53
$23-\mathrm{Jul}$	02-Aug	19.7	2402	-0.36	-0.36	-0.46	-0.53
24-Jul	03-Aug	19.8	2381	-0.36	-0.36	-0.46	-0.54
$25-\mathrm{Jul}$	04-Aug	19.8	2358	-0.36	-0.36	-0.46	-0.55
$25-\mathrm{Jul}$	04-Aug	19.8	2358	-0.36	-0.36	-0.46	-0.55
26-Jul	05-Aug	19.9	2333	-0.36	-0.36	-0.46	-0.55
27-Jul	06-Aug	19.9	2304	-0.36	-0.36	-0.46	-0.56
28-Jul	07-Aug	19.9	2271	-0.36	-0.36	-0.46	-0.56
29-Jul	08-Aug	19.8	2237	-0.36	-0.36	-0.46	-0.56
30-Jul	09-Aug	19.9	2202	-0.36	-0.36	-0.46	-0.57
Implied pMA							
30-Jul	09-Aug	19.9	2202	0.56	0.56	0.85	1.33

BC Drought Information

Drought is a recurrent feature of climate involving a deficiency of precipitation over an extended period of time, resulting in a water shortage.

Drought Level Classification		
Level	Impacts	General Response Measures
0	There is sufficient water to meet socioeconomic and ecosystem needs	Preparedness
1	Adverse impacts to socio-economic or ecosystem values are rare	Conservation
2	Adverse impacts to socio-economic or ecosystem values are unlikely	Conservation Local water restrictions where appropriate
3	Adverse impacts to socio-economic or ecosystem values are possible	Conservation Local water restrictions likely
4	Adverse impacts to socio-economic or ecosystem values are likely	Conservation and local water restrictions Regulatory action possible
5	Adverse impacts to socio-economic or ecosystem values are almost certain	Conservation and local water restrictions Regulatory action likely Possible emergency response

BRITISH
COLUMBIA

Early Summer run low discharge years

Years where the 31-day mean Discharge was <3000 cms.

- 9 out of 10 years highlighted in the discharge graph had observed Temperatures greater than $18^{\circ} \mathrm{C}$.

Observed Impacts of low water levels on the Spawning Grounds

(Based on Near Final Spawning Escapement presentations)

The following table indicates the conditions in the river and on the spawning grounds in previous low discharge years compared to 2023.

\checkmark Ich present

- Discharge and Temperature for 2023 is the observed Discharge and Temperature for August 2 . It is not a 19 or 31 -day mean.
- The 2006 31-day mean discharge level is very similar to current conditions.
- Restricted spawning ground access would not have had a substantial impact on escapement for the population as a whole because the tributaries that had difficult or no access for spawners typically represent a very small proportion of total spawners (pers. comm. Scott Decker)
- This would not have had a substantial impact on escapement for the population as a whole because the tributaries that had difficult or no access for spawners typically represent a very small proportion of total spawners (pers. comm. Scott Decker)

Performance of different methods to predict Early Summer Run pDBE

Three different models have been tested:

- All years median
- Supplemental approach (using discharge and temperature thresholds to determine median pDBEs)
- 19-day temperature and discharge model

Previously these models had been evaluated using a retrospective analysis ${ }^{1}$ to determine how well the different models performed in recent years (since 2010).

The extremely low discharge observed in 2023 might require a different evaluation: how well do the different models perform in low discharge years?

Low Discharge years

All Years

[^0]Performance using Low Discharge years

Performance using All-years

Conclusions for low discharge years

- During low discharge years (<3000 cms), the mean absolute error is smallest for the 19-day temperature and discharge model compared to the Supplemental Approach and the All-years Median.
- The 19-day temperature and discharge model is slightly conservative but the tendency to be too conservative is considerably smaller on low discharge years compared to recent years in general.
- Applying the all-years median (which performed best in recent years) in low discharge years would tend to underestimate the pDBE and not be conservative enough.

2023 Fraser River sockeye salmon daily migration Timing updated based on Timing Correlations

2023 Fraser River sockeye salmon daily migration Timing updated based on Timing Correlations

	Escapement past Mission through 02-Aug	Projected abundance en route to Mission based on marine test fishery data ${ }^{1,2}$									Escapement + projections through 08-Aug
Area 20 date		28-Jul	29-Jul	30-Jul	31-Jul	01-Aug	02-Aug	Total	80\% Pl^{3}		
Mission date		03-Aug	04-Aug	05-Aug	06-Aug	07-Aug	08-Aug		10p	90p	
Total Fraser	235,300	6,000	33,600	24,400	70,200	16,800	136,900	287,900	165,400	468,400	523,200
Early Stuart	40,600	0	0	0	0	0	0	0	0	0	40,600
Early Summer Run	161,500	2,000	16,700	9,600	20,300	3,300	33,400	85,300	41,800	176,600	246,800
Chilliwack	29,100	0	500	200	300	0	1,300	2,300	1,100	4,800	31,400
Pitt/Alouette/Coquitlam	18,000	400	5,700	1,300	2,100	100	4,700	14,300	7,000	29,600	32,300
Nadina group ${ }^{4}$	108,800	1,100	8,200	6,100	13,000	2,200	22,800	53,400	26,200	110,500	162,200
Early Thompson ${ }^{5}$	5,600	500	2,300	2,000	4,900	1,000	4,600	15,300	7,500	31,700	20,900
Summer Run	32,800	3,800	16,400	14,000	47,200	12,800	101,000	195,200	119,100	281,100	228,000
Harrison / Widgeon ${ }^{2}$	2,800	300	700	1,000	2,300	500	700	5,500	3,400	7,900	8,300
Late Stuart / Stellako	13,900	1,900	9,000	5,800	18,300	4,700	39,500	79,200	48,300	114,000	93,100
Chilko	12,700	1,400	6,200	5,900	21,200	6,000	51,300	92,000	56,100	132,500	104,700
Quesnel	3,100	200	500	1,100	4,400	1,300	8,800	16,300	9,900	23,500	19,400
Raft / North Thompson	300	0	0	200	1,000	300	700	2,200	1,300	3,200	2,500
Late Run	400	200	500	800	2,700	700	2,500	7,400	4,500	10,700	7,800
Birkenhead / Big Silver	100	100	200	500	1,800	500	900	4,000	2,400	5,800	4,100
Late run excl Birkenhead	300	100	300	300	900	200	1,600	3,400	2,100	4,900	3,700

${ }^{1}$ En route catches are incomplete: catches from present and future fisheries must be deducted from projections and added to the catches removed
${ }^{2}$ Projected abundances en route to Mission include Harrison and Late runs, an uncertain number of which are expected to delay
${ }^{3} 80 \%$ Probabability Interval: there exists an 80% chance that the true abundance lies within this interval
${ }^{4}$ Nadina / Bowron / Gates / Nahatlatch / Taseko
${ }^{5}$ Early South Thompson / North Barriere
2023 Fraser River sockeye diversion rates through Johnstone Strait

2023 Fraser River sockeye expansion line (1/catchability)

Purse Seine test fishery			
	First Area	Last Area	1/q
	20 Date	20 Date	(6-day ave.)
In-season est. observed*	22-Jul	27-Jul	100
Currently used in-season			180
Historical prediction	28-Jul	02-Aug	180
In-season applied A12			180
A20**			400

*Summer excl. Harrison 1/q
**Adjusted 1/q

PiACNdBoGaNhTsko run size assessment using MissionGillNetPurseSeine NA
PSC file nr:6100-04 (2023)

PiACNdBoGaNhTsko Abundance
Median = 164.1 thousand (131 - $199 \mathrm{~K} 80 \%$ PI)
Mode $=160$ thousand

Fit of the model to reconstructed data
Area 20 median $=97$ thousand ($62-131 \mathrm{~K} 80 \% \mathrm{PI}$) Area 20 mode= 100 thousand
Area 12 median $=66$ thousand ($38-99 \mathrm{~K} 80 \% \mathrm{PI}$)

In-season changes in run size estimates

Timing of 50% the run
Timing = 20-Jul (18-Jul - 22-Jul 80\% PI)
Spread = 37 days (28-46 days $\mathbf{8 0 \% ~ P I}$)

	Run Size Statistics
25% PI	148 K
75% PI	181 K
p10 (Prob>p10)	$34.4 \mathrm{~K}(100 \%)$
$p 25$ (Prob>p25)	$62.9 \mathrm{~K}(100 \%)$
$p 50($ Prob>p50)	$123.01 \mathrm{~K}(93 \%)$
p75 (Prob>p75)	$240.01 \mathrm{~K}(1 \%)$
$p 90$ (Prob>p90)	$462.01 \mathrm{~K}(0 \%)$
Mission to-date	$127 \mathrm{~K}(84-182 \mathrm{~K} \mathrm{80} \mathrm{\%} \mathrm{PI})$
$\%$ Mission to-date	$78 \%(51.3-110.7 \% 80 \%$ PI)
Projected+Tails	$31,000(16-52 \mathrm{~K})$
Tails	$11,000(4-24 \mathrm{~K})$

In-season changes in Area 20 timing estimates

Assessment Date

ESThNBar Abundance
Median = 18.3 thousand ($12-35 \mathrm{~K} 80 \% \mathrm{PI}$)
Mode = 20 thousand

Fit of the model to reconstructed data Area 20 median = 10 thousand (6 - $20 \mathrm{~K} \mathrm{80} \mathrm{\%} \mathrm{PI)}$ Area 20 mode $=10$ thousand
Area 12 median $=8$ thousand (5-16 K 80\% PI)

In-season changes in run size estimates

Timing of 50% the run
Timing = 01-Aug (28-Jul - 05-Aug 80\% PI) Spread = 30 days ($\mathbf{2 4}-\mathbf{3 6}$ days $\mathbf{8 0 \% ~ P I}$)

	Run Size Statistics
25% PI	14 K
75% PI	24 K
p10 (Prob>p10)	$12.7 \mathrm{~K}(85 \%)$
p25 (Prob>p25)	$18 \mathrm{~K}(52 \%)$
p50 (Prob>p50)	$61 \mathrm{~K}(2 \%)$
p75 (Prob>p75)	$111 \mathrm{~K}(1 \%)$
p90 (Prob>p90)	$197 \mathrm{~K}(0 \%)$
Mission to-date	$5 \mathrm{~K}(3-8 \mathrm{~K} 80 \%$ PI)
$\%$ Mission to-date	$29 \%(16.9-42.1 \% 80 \%$ PI)
Projected+Tails	$13,000(6-30 \mathrm{~K})$
Tails	$7,000(3-21 \mathrm{~K})$

In-season changes in Area 20 timing estimates

Assessment Date
Date: 2023-08-03, Time: 12:24

HarrWidg run size assessment using GillNetPurseSeine NA
HarrWidg Abundance
Median $=31.6$ thousand ($17-68 \mathrm{~K} 80 \% \mathrm{PI}$)
Mode $=30$ thousand

Fit of the model to reconstructed data
Area 20 median = 22 thousand ($12-46 \mathrm{~K} 80 \% \mathrm{PI}$) Area 20 mode $=20$ thousand
Area 12 median $=8$ thousand $(2-26 \mathrm{~K} \mathrm{80} \mathrm{\%} \mathrm{PI})$

In-season changes in run size estimates

	Run Size Statistics
25% PI	23 K
75% PI	45K
p10 (Prob>p10)	$12.02 \mathrm{~K}(98 \%)$
p25 (Prob>p25)	$23.06 \mathrm{~K}(74 \%)$
p50 (Prob>p50)	$51.08 \mathrm{~K}(19 \%)$
p75 (Prob>p75)	$111.2 \mathrm{~K}(3 \%)$
p90 (Prob>p90)	$228.7 \mathrm{~K}(1 \%)$
Mission to-date	$\mathrm{K}(-\mathrm{K} 80 \% \mathrm{PI})$
\% Mission to-date	$\%(-\% 80 \% \mathrm{PI})$
Projected+Tails	$24,000(11-60 \mathrm{~K})$
Tails	$17,000(7-47 \mathrm{~K})$

In-season changes in Area 20 timing estimates

Assessment Date

Date: 2023-08-03, Time: 12:17

Pink In-season Update

August 3, 2023
M. Hague

Current Trends

- Currently applying a 900 expansion line to Area 20 data and 300 to Area 12 CPUE data
- Similar to 2019 we are seeing:
o Most of the abundance in Area 20 to date
o Higher than expected Fraser stock proportions in Area 20
- Reminder: data prior to August $1^{\text {st }}$ is not included in official assessments. In 2019, the sum of marine abundances from August $1^{\text {st }}$ onwards was a better reflection of post-season run size than when total marine abundance included early purse seine data. Future figures will only include data from August $1^{\text {st }}$ onwards.

The information presented on this page has been prepared by PSC Secretariat Staff. All in-season estimates of run size and timing should be considered draft preliminary estimates unless adopted by the Fraser River Panel.
Preseason forecasts, inseason estimates, and official estimates of run size and associated timing

	Run Size							Run size components				Run Timing ${ }^{1}$					
	Inseason	Preseason	Inseason estimate		Inseason 80\% PIs ${ }^{2}$		Method	Catch + Escapement	6-day Projection ${ }^{3}$	Seaward Abundance	Migration Delay	Inseason Adopted	Preseason Forecast	Inseason estimate	Inseason 80\% PIs ${ }^{\text {2 }}$		Method
	Adopted	Forecast			$10 \% \text { PI }$	$90 \% \text { PI }$									10\% PI	90\% PI	
Early Stuart Run	43,000	23,000	\checkmark	41,000	41,000	41,000	Recon	41,000	0	0	0	02-Jul	07-Jul	02-Jul	02-Jul	02-Jul	Recon
Early Summer Run	NA	186,000	\bigcirc	209,000	183,000	248,000	Sum	165,000	26,000	18,000	0	NA	06-Aug	18-Jul	16-Jul	20-Jul	Weight
Chilliwack		2,000	\bullet	31,000	30,000	32,000	Recon	29,000	2,000	0	0		20-Jul	05-Jul	04-Jul	05-Jul	Recon
Pitt/Nadina Group ${ }^{4}$		123,000	-	160,000	141,000	181,000	Recon(2)	129,000	19,000	12,000	0		05-Aug	19-Jul	18-Jul	20-Jul	Recon(2)
Early Thompson ${ }^{5}$		61,000	\diamond	18,000	12,000	35,000	Model	7,000	5,000	6,000	0		09-Aug	01-Aug	28-Jul	05-Aug	Model
Summer Run	NA	1,167,000						34,000	195,000		3,000	NA	17-Aug	06-Aug	03-Aug	17-Aug	Timing Corr.
Harrison / Widgeon		51,000						3,000	6,000		3,000		12-Aug	05-Aug	28-Jul	13-Aug	Timing Corr.
${ }^{1}$ Run timing refers to the date when 50% of the run migrated past the Area 20 reference point.								Methods for run size \& timing estimation									
${ }^{2} 80 \%$ Probability Interval: there exists an 80% chance that the true abundance lies within this interval								Model \quad Run size assessment model (median)									
${ }^{3}$ Normally based on test fishery data. Based on Model if Method $=$ Recon(2).								Recon	Catch + escapement +6 -day test fish projection + model seaward projection								
${ }^{4}$ Pitt / Alouette / Coquitlam / Nadina / Bowron / Gates / Nahatlatch / Taseko								Recon(2)	Catch + escapement + model projections								
${ }^{5}$ Early South Thompson / North Barriere.								Sum	Sum of individual	roups							
								Weight Weighted average of individual groups	Weighted average of individual groups								

Run Size Uncertainty Legend

$\checkmark \geq 95 \%$ of the run size has been accounted for in catch + escapement. Clear indication of run size; minor run size updates still expected

- $\geq 70 \%$ of the run size has been accounted for in catch + escapement. Good indication of run size; peak fo the run has been observed at Mission
uncertainty relates to seaward abundance
$\geq 50 \%$ of the run size has been accounted for in catch + escapement. Decent indciation of run size; $\geq 50 \%$ confirmed at Mission
$\diamond<50 \%$ of the run size has been accounted for in catch + escapement. Uncertain or early indciation of run size based on marine data
The Run Size Uncertainty Indicator is a categorical indication of the degree of uncertainty present in the run size estimate. Estimates are categorized
quantitatively based on the proportion of the run that has been accounted for with high certainty in catch + escapement.
Historical 50\% migration date for Early

Early Thompson run size based on timing

Catch+Escapement To Date: 6-day projections:	$\mathbf{6 , 0 0 0}$ $\mathbf{1 5 , 0 0 0}$		
	Method	Run Size*	\% Seaward of Mission
Based on timing of 30-Jul	50% Date	21,000	71%
Based on timing of 01-Aug	50% Date	33,000	82%
Based on timing of 05-Aug	\% Seaward	53,000	89%
Based on timing of 08-Aug	\% Seaward	74,000	92%
Based on timing of 11-Aug	\% Seaward	109,000	94%

*Based on \% seaward in 2011, 2015 and 2019 if timing is later than 02-Aug
*Equal to double the reconstructed abundance if timing is earlier than 03-Aug

Early Summer run size based on timing

Catch+Escapement To Date: 6-day Projection:	$\mathbf{1 6 4 , 0 0 0}$ $\mathbf{2 6 , 0 0 0}$		
	Method	Run Size*	\% Seaward
Based on timing of 18-Jul	50% Date	212,000	23%
Based on timing of 19-Jul	50% Date	226,000	27%
Based on timing of 20-Jul	50% Date	243,000	33%
Based on timing of 21-Jul	50% Date	261,000	37%
Based on timing of 22-Jul	50% Date	272,000	40%

*Based on \% seaward in 2011, 2015 and 2019 if timing is later than 02-Aug
*Equal to double the reconstructed abundance if timing is earlier than 03-Aug

Thompson ($\mathrm{n}=28$)

Historical 50\% migration date for Early Summer run

[^0]: ${ }^{1}$ Forrest, M. 2022. Retrospective analysis of the DBE approach: part II. June FRP meeting presentation, Sequim, WA

